
Книга посвящена использованию математики в экономике и анализу роли точных наук в экономическом развитии. Авторы рассказывают об основных математических инструментах, используемых в экономическом анализе. Их цель - помочь читателю научиться принимать верные решения в вопросах, касающихся инвестирования, размещения сбережений и кредитования. Создатели книги затрагивают такие важные темы, как производство и рынок, спрос и предложение, международная торговля, ценообразование, рынок капитала и фондовые биржи. Безусловно, этот разговор немыслим без строгой красоты математики.

Выпуск посвящен часам и времени. Из выпуска вы узнаете об истории часов в железнодорожном транспорте, о часовых поясах, о том как менялись представления о сущности и природе времени на протяжении веков, о том, как по-разному смотрят на феномен времени история и физика, какими способами его изучают.

Окружающий нас мир полон изумительно красивых и сложных фигур, примерами которых можно считать и обычный цветок, и изломанные линии фьордов. Среди них отдельное место занимают многогранники - фигуры особого очарования с богатой родословной. На протяжении веков они привлекали внимание не только геометров, но и кристаллографов, архитекторов, художников, скульпторов и ювелиров. Читатели этой книги откроют для себя удивительный раздел геометрии, посвященный многогранникам, и познакомятся с оригинальными способами применения этих тел. Добро пожаловать в многогранный мир!

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математини и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы - неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой - дают толчок их новому осмыслению. Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить! Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ. Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.

Физика, астрономия, экономика и другие точные науки основаны на математике - это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.

Книга посвящена методике решения задач высшей математики при помощи программы Mathcad. Приводятся примеры расчета типовых задач линейной алгебры, математического анализа, дифференциальных уравнений, статистики и обработки данных. Объясняется работа численных алгоритмов, заложенных во встроенных функциях и операторах системы Mathcad. Предлагаются неочевидные приемы решения актуальных задач современной вычислительной науки.

Бесконечно малая величина - это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых - общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых - вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса. В этой книге идет речь об анализе бесконечно малых и его удивительной истории.

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир...

В мире существует несколько основных видов искусства, но музыка, безусловно, занимает в этом ряду главенствующую позицию. Неспроста многие великие мыслители отдавали пальму первенства именно музыке: она — удивительный симбиоз чистого вдохновения и строгого расчета, полета фантазии и рационального подхода. Музыка — живое доказательство единства творчества и математики. Из этого выпуска читатель почерпнет множество интересных фактов. Какие произведения нельзя сыграть, не разгадав их загадку? Почему существуют гармонические и диссонирующие аккорды? Благодаря чему мы в состоянии на слух отличить скрипку от трубы?

Научно-популярный физико-математический журнал, рассчитанный на массового читателя. Материалы, накопленные в журнале за годы его существования, практически бесценны. Идею создания издания такой тематики высказал П.Л. Капица в 1964 году.

Научно-популярный физико-математический журнал, рассчитанный на массового читателя. Материалы, накопленные в журнале за годы его существования, практически бесценны. Идею создания издания такой тематики высказал П.Л. Капица в 1964 году.

Многие числа обрели особое арифметическое или мистическое значение еще в древности. В наши дни эти представления трансформировались в нечто другое, и те же числа «обросли» новыми мифами. Более того, были изобретены новые числа, одни из которых получили имя, а другие - и фамилию. Сегодня мы можем говорить о натуральных, целых, вещественных, рациональных, иррациональных, мнимых, трансцендентных, трансфинитных и многих других числах. Из этой книги вы узнаете, что означали числа в древности и какие замечательные свойства они приобрели в современном мире.

Наш мир полон не только букв и цифр, но и самых разных изображений. Это картины, фотографии, произведения искусства, многочисленные схемы... Вспомните схему вашей линии метро или автобусного маршрута — это всего лишь линия с точками, рядом с которыми подписаны названия остановок. Подобные схемы из точек и линий называются графами. Именно о них вы узнаете, прочитав этот выпуск.

Многие числа обрели особое арифметическое или мистическое значение еще в древности. В наши дни эти представления трансформировались в нечто другое, и те же числа «обросли» новыми мифами. Более того, были изобретены новые числа, одни из которых получили имя, а другие - и фамилию. Сегодня мы можем говорить о натуральных, целых, вещественных, рациональных, иррациональных, мнимых, трансцендентных, трансфинитных и многих других числах. Из этой книги вы узнаете, что означали числа в древности и какие замечательные свойства они приобрели в современном мире.

Принадлежащее Архимеду изречение: "Дайте мне точку опоры, и я переверну весь мир", — знает каждый образованный человек. Его разработки и исследования изменили весь мир вокруг нас, заложив основы множества математических открытий и механики. С самого детства он полюбил науку, так как родился в семье ученого и отец с ранних лет приобщал сына к размышлениям.

Статистика - наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики - получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков. Читатель совершит экскурс в теорию вероятностей, а также узнает о статистических исследованиях, предвыборных опросах и о том, какие рассуждения лежат в основе всех статистических тестов.

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги - рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.

Серия "Мир математики" — уникальный проект, позволяющий читателю прикоснуться к тайнам такой удивительной науки - как математика.

В традиционных курсах по методам решения задач математической физики рассматриваются прямые задачи. При этом решение определяется из уравнений с частными производными, которые дополняются определенными краевыми и начальными условиями. В обратных задачах некоторые из этих составляющих постановки задачи отсутствуют. Неизвестными могут быть, например, начальные условия, граничные режимы, коэффициенты и правые части уравнений. Обратные задачи часто являются некорректными в классическом смысле, и для их приближенного решения приходится применять методы регуляризации. В книге рассмотрены основные классы обратных задач для уравнений математической физики и численные методы их решения.